Понятие механическая энергия. Какие виды механической энергии существуют. Работа и энергия

Цель этой статьи - раскрыть сущность понятия «механическая энергия». Физика широко использует это понятие как практически, так и теоретически.

Работа и энергия

Механическую работу можно определить, если известны сила, действующая на тело, и перемещение тела. Существует и другой способ для расчета механической работы. Рассмотрим пример:

На рисунке изображено тело, которое может находиться в различных механических состояниях (I и II). Процесс перехода тела из состояния I в состояние II характеризуется механической работой, то есть при переходе из состояния I в состояние II тело может осуществить работу. При осуществлении работы меняется механическое состояние тела, а механическое состояние можно охарактеризовать одной физической величиной - энергией.

Энергия - это скалярная физическая величина всех форм движения материи и вариантов их взаимодействия.

Чему равна механическая энергия

Механической энергией называют скалярную физическую величину, которая определяет способность тела выполнять работу.

А = ∆Е

Поскольку энергия - это характеристика состояния системы в определенный момент времени, то работа - это характеристика процесса изменения состояния системы.

Энергия и работа обладают одинаковыми единицами измерения: [А] = [Е] = 1 Дж.

Виды механической энергии

Механическая свободная энергия делится на два вида: кинетическую и потенциальную.

Кинетическая энергия - это механическая энергия тела, которая определяется скоростью его движения.

Е k = 1/2mv 2

Кинетическая энергия присуща подвижным телам. Останавливаясь, они выполняют механическую работу.

В различных системах отсчета скорости одного и того же тела в произвольный момент времени могут быть разными. Поэтому кинетическая энергия - относительная величина, она обуславливается выбором системы отсчета.

Если на тело во время движения действует сила (или одновременно несколько сил), кинетическая энергия тела меняется: тело ускоряется или останавливается. При этом работа силы или работа равнодействующей всех сил, которые приложены к телу, будет равняться разнице кинетических энергий:

A = E k1 - E k 2 = ∆Е k

Этому утверждению и формуле дали название - теорема о кинетической энергии .

Потенциальной энергией именуют энергию, обусловленную взаимодействием между телами.

При падении тела массой m с высоты h сила притяжения выполняет работу. Поскольку работа и изменение энергии связаны уравнением, можно записать формулу для потенциальной энергии тела в поле силы тяжести :

E p = mgh

В отличие от кинетической энергии E k потенциальная E p может иметь отрицательное значение, когда h<0 (например, тело, лежащее на дне колодца).

Еще одним видом механической потенциальной энергии является энергия деформации. Сжатая на расстояние x пружина с жесткостью k имеет потенциальную энергию (энергию деформации):

E p = 1/2 kx 2

Энергия деформации нашла широкое применение на практике (игрушки), в технике - автоматы, реле и другие.

E = E p + E k

Полной механической энергией тела именуют сумму энергий: кинетической и потенциальной.

Закон сохранения механической энергии

Одни из самых точных опытов, которые провели в середине XIX века английский физик Джоуль и немецкий физик Майер, показали, что количество энергии в замкнутых системах остается неизменной. Она лишь переходит от одних тел к другим. Эти исследования помогли открыть закон сохранения энергии :

Полная механическая энергия изолированной системы тел остается постоянной при любых взаимодействиях тел между собой.

В отличие от импульса, который не имеет эквивалентной формы, энергия имеет много форм: механическую, тепловую, энергию молекулярного движения, электрическую энергию с силами взаимодействия зарядов и другие. Одна форма энергии может переходить в другую, например, в тепловую кинетическая энергия переходит в процессе торможения автомобиля. Если сил трения нет, и тепло не образуется, то полная механическая энергия не утрачивается, а остается постоянной в процессе движения или взаимодействия тел:

E = E p + E k = const

Когда действует сила трения между телами, тогда происходит уменьшение механической энергии, однако и в этом случае она не теряется бесследно, а переходит в тепловую (внутреннюю). Если над замкнутой системой выполняет работу внешняя сила, то происходит увеличение механической энергии на величину выполненной этой силой работы. Если же замкнутая система выполняет работу над внешними телами, тогда происходит сокращение механической энергии системы на величину выполненной ею работы.
Каждый вид энергии может превращаться полностью в произвольный иной вид энергии.

Кинетическая энергия – скалярная физическая величина, характеризующая движущееся тело и равная для материальной точки половине произведения ее массы на квадрат ее скорости:

Единицей кинетической энергии в СИ является джоуль (Дж).

При скоростях, близких к скорости света, следует пользоваться иным определением кинетической энергии.

Кинетическая энергия протяженного тела равна сумме кинетических энергий его малых частей, которые можно считать материальными точками.

Используя второй закон Ньютона, можно доказать теорему об изменении кинетической энергии тела: в инерциальной системе отсчета изменение кинетической энергии тела равно работе всех сил, как внутренних, так и внешних, действующих на это тело.

Если на прямолинейном участке траектории на тело, совершающее перемещение x , действуют две постоянные силыи, направленные под углами 1 и  2 к перемещению, то изменение кинетической энергии тела равно:

12. Механическая работа и мощность. Кпд.

Механическая работа A постоянной силына перемещение– это скалярная физическая величина, равная произведению модуля силыF , модуля перемещенияs и косинуса угла между направлениями силы и перемещения.

А = Fs cos =F x s ,

где F x – проекция силы на направление перемещения (рис. 4).

Работа постоянной силы в зависимости от угла между векторами силы и перемещенияможет быть положительной, отрицательной и равной нулю (рис. 5).

Единицей работы в СИ является джоуль (Дж).

В общем случае действия переменной силы на криволинейном участке траектории расчет работы оказывается более сложным.

Мощность – скалярная физическая величина, равная отношению работы силыA к промежутку времениt , в течение которого она была произведена:

Мощность силы может измеряться во времени N (t )

Единицей мощности в СИ является ватт (Вт).

При воздействии силы на тело, движущееся со скоростью(рис. 7), мощность этой силы равна:

N = F cos .

Часто термины работа и мощность относят к устройству, благодаря которому возникают силы, совершающие работу. Говорят о работе человека, мощности электродвигателя или двигателя автомобиля вместо работы и мощности силы натяжения веревки, с которой человек тянет сани, или работы и мощности внутренних сил или мощности сил сопротивления воздуха при движении автомобиля. В простейших случаях (подъемный кран поднимает груз) это вполне допустимо, однако в ряде случаев требует более аккуратного рассмотрения. Так, в случае движения автомобиля силой тяги является сила трения шин об асфальт, а ее работа равна нулю. В случае вертолета, зависшего над землей, сила тяги равна силе тяжести, мощность силы тяги равна нулю, однако энергия сгорающего топлива затрачивается на сообщение кинетической энергии потокам воздуха, отбрасываемого вниз.

При использовании простейших механизмов человек стремится совершить действия, которые не под силу выполнить «голыми руками» (поднять груз, сдвинуть тело и т.д.). Такие механизмы характеризуются физической величиной, называемой коэффициентом полезного действия (КПД). В механике обычно под КПД механизма понимают отношение полезной работы к затраченной.

Когда говорят о затраченной работе, то имеют в виду работу силы , которой человек воздействует на механизм. Если речь идет о полезной работе, то имеют в виду работу силы, приложенной к телу при его равномерном перемещении. Так, если человек поднимает груз с помощью системы блоков, перемещая конец веревки на длинуs 1 , а груз при этом перемещается (поднимается) на высоту s 2 под действием силы F 2 = mg , то КПД механизма, обозначаемый буквой , будет равен.

РАБОТА И МЕХАНИЧЕСКАЯ ЭНЕРГИЯ.

§1 Энергия. Механическая энергия.

Виды механической энергии. Работа

Энергией называется скалярная физическая величина, являющаяся общей мерой различных форм движения материи.

Энергия количественно характеризует систему относительно различных превращений движения в ней, которые происходят в результате взаимодействия частиц системы как друг с другом, так и с внешними телами. Для анализа различных форм движения вводят различные виды энергии: механическую, внутреннюю, электромагнитную, ядерную и др.

К механической энергии относится энергия, связанная с силами всемирного тяготения, деформированного упругого тела и энергия, связанная с движением тела.

Ещё определения энергии в механике: Энергией называется способность тела совершать работу. Запас энергии определяется работой, которую может совершить тело, изменяя свое состояние: поднятый груз при падении; сжатая пружина при восстановлении формы: движущееся тело при остановке. Механической энергией тела называют величину равную максимальной работе, которую может совершить тело в данных условиях.

І Механическая работа (Работа постоянной силы)


Если тело под действием силы совершает перемещение , работа А этой силы равна скалярному произведению силы на вектор перемещения. Работа силы есть скалярная величина

Работа горизонтальной составляющей силы F - силы F тяги равна ()

Работа вертикальной составляющей силы F - силы подъёма F n равна ()

Сила , направление которой перпендикулярно направлению движению тела, работу не совершает.

Работа силы трения равна ().

Силу, направленную против движения и совершающую отрицательную работу называют силой сопротивления. Сила перпендикулярная к перемещению не изменяет числового значения скорости (такая сила заставляет тело двигаться по окружности - центростремительная сила) и работа ее равна 0.

Сила, увеличивающая численное значение скорости (угол α - о с трый), совершает положительную работу. Сила, уменьшающая численное значение скорости (угол α - ), совершает отрицательную работу.

ІІ . Работа силы тяжести. Консервативные силы.

Определим работу силы тяжести при движении тела массой m по наклонной плоскости, длина которой L , а высота h . На тело действует две силы: сила тяжести, направленная вертикально вниз и сила реакции опоры , направленная перпендикулярно к поверхности плоскости АС. Их равнодействующая 1 совершает работу, сообщая телу ускорение (силой трения пренебрегаем).

из

б) Определим работу, совершаемую силой тяжести при свободном падении тела на высоту.

Сравнение работы, совершаемой силой тяжести при движении по наклонной плоскости и при свободном падении показывает, что работа силы тяжести не зависит от длины и формы пути, пройденного телом, и определяется произведением силы тяжести на разность высот в начальном и конечном положении.

При движении вниз сила тяжести совершает положительную работу, при движении вверх - отрицательную. Работа силы тяжести по замкнутому пути 1-2-1 равна 0.

Силы, работа каких не зависит от формы и длины пути, а определяется лишь начальным и конечным положением тела, называются консервативными.

Работа консервативных сил по замкнутому пути равна нулю.Пример консервативных сил: сила тяжести, сила упругости пружины, и силы электростатического взаимодействия.

ІІІ. Работа силы трения. Диссипативные силы.

Сила трения F тр . определяется относительной скоростью соприкасающихся тел (сила трения скольжения). Сила трения всегда направленна против движения (), т.е. всегда является силой сопротивления, и поэтому выполняемая ею работа всегда отрицательна и после возвращения тела в исходное положение суммарная работа сил трения отлична от 0 и отрицательная.

Диссипативными силами называются силы, суммарная работа которых при любых перемещениях замкнутой системы всегда отрицательна. Пример: силы трения скольжения и силы сопротивления движению тел в жидкостях и газах. В результате действия диссипативных сил механическая энергия переходит в другие виды энергии.

І V . Работа переменной силы.

Определим работу силы, величина которой изменяется от точки к точке, по закону показанному на рисунке. Разобьем перемещения S на элементарные участки dS , на которых величина силы остается постоянной, тогда элементарная запишется в виде

Полная работа А на всем перемещении от точки 1 до точки 2 равна

или, переходя к пределу,

A

Работа переменной силы равна:

Работа силы упругости с учётом того, что

A= ()

Работа сил ы упругости замкнутому пути 1-2-1

VI . Кинетическая энергия.

Если элементарное перемещение d записать в виде

По II закону Ньютона

тогда

A =

Величина называется кинетической энергией

Работа равнодействующей всех сил действующих на частицу равна изменению кинетической энергии частицы.

Тогда

или другая запись

Если A > 0, то W К возрастает (падения)

Если A > 0, то W К убывает (бросание).

Движущиеся тела обладают способностью выполнять работу и в том случае, если никакие силы со стороны других тел на них не действуют. Если тело движется с постоянной скоростью, то - сумма всех сил действующих на тело равна 0 и работа при этом не совершается. Если тело будет действовать с некоторой силой по направлению движения на другое тело, тогда оно способно совершить работу. В соответствии с ІІІ законом Ньютона к движущемуся телу будет приложена такая же по величине сила, но направленная в противоположную сторону. Благодаря действию этой силы скорость тела будет уменьшаться до его полной остановки. Энергия W К , обусловленная движением тела, называется кинетической. Полностью остановившееся тело не может совершить работы. W К зависит от скорости и массы тела. Изменение направления скорости не влияет на кинетическую энергию.

VII . Потенциальная энергия.

Если тело поднять на высоту h , то падая под действием силы тяжести, тело может совершить работу

Если жать пружину на величину X 2 = X (X 1 = 0), то возвращать в исходное состояние деформированная пружина способна выполнить работу


Следовательно, эти тела обладают запасом энергии, возникающей благодаря взаимодействия тел друг с другом. Эту энергию называют потенциальной. Потенциальной энергией называется энергия, зависящая от взаимного положения частиц системы.

Если тело падает с некоторой высоты h 1до высоты h 2, его потенциальная энергия изменяется от значения

до

Совершенная при этом работа равна

т.е. работа, совершаемая телами, на которые действуют консервативные силы, равна изменению потенциальной энергии с обратным знаком.

Таким образом, когда падающее тело совершает положительную работу, его W П уменьшается. Если тело поднимают вверх, сила тяжести совершает отрицательную работу и W П возрастает.

VIII . Полная механическая энергия.

Механической энергией или полной механической энергией называется энергия механического движения и взаимодействия. Механическая энергия равна сумме кинетической и потенциальной энергии.

В механике различают два вида энергии: кинœетическую и потенциальную. Кинœетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Пусть тело В , движущееся со скоростью , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила , касательная составляющая которой вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона

Следовательно,

Работа͵ совершаемая телом до полной его остановки равна:

Итак, кинœетическая энергия поступательно движущегося тела равна половинœе произведения массы этого тела на квадрат его скорости:

Из формулы (3.7) видно, что кинœетическая энергия тела не должна быть отрицательной ().

В случае если система состоит из n поступательно движущихся тел, то для ее остановки крайне важно затормозить каждое из этих тел. По этой причине полная кинœетическая энергия механической системы равна сумме кинœетических энергий всœех входящих в нее тел:

Из формулы (3.8) видно, что Е k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость . Другими словами, кинœетическая энергия системы есть функция состояния ее движения .

Скорости существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инœерциальной системе отсчета͵ т.к. иначе нельзя было бы использовать законы Ньютона. При этом, в разных инœерциальных системах отсчета͵ движущихся относительно друг друга, скорость i -го тела системы, а, следовательно, его и кинœетическая энергия всœей системы будут неодинаковы. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, кинœетическая энергия системы зависит от выбора системы отсчета͵ ᴛ.ᴇ. является величиной относительной .

Потенциальная энергия - ϶ᴛᴏ механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (Е п = 0). Понятие ʼʼпотенциальная энергияʼʼ имеет место только для консервативных систем, ᴛ.ᴇ. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна (Е п = 0 при h = 0); для груза, прикрепленного к пружинœе, , где - удлинœение (сжатие) пружины, k – ее коэффициент жесткости (Е п = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всœемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (Е п = 0 при ).

Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. В случае если тело падает по вертикали, то

где Е no – потенциальная энергия системы при h = 0 (знак ʼʼ-ʼʼ показывает, что работа совершается за счёт убыли потенциальной энергии).

В случае если это же тело падает по наклонной плоскости длиной l и с углом наклона к вертикали (, то работа сил тяготения равна прежней величинœе:

В случае если, наконец, тело движется по произвольной криволинœейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинœейных участков . Работа силы тяготения на каждом из таких участков равна

На всœем криволинœейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счёт убыли потенциальной энергии:

В свою очередь работа dA выражается как скалярное произведение силы на перемещение , в связи с этим последнее выражение можно записать следующим образом: W системы равна сумме ее кинœетической и потенциальной энергий:

Из определœения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинœетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, ᴛ.ᴇ. зависит только от положения и скоростей всœех тел системы.

Существует два вида механической энергии - кинетическая энергия точечного тела и потенциальная энергия системы тел . Механическая энергия системы тел равна сумме кинетических энергий входящих в эту систему тел и потенциальных энергий их взаимодействия:

Механическая энергия = Кинетическая энергия + Потенциальная энергия

Важное значение имеет закон сохранения механической энергии :
В инерциальной системе отсчета механическая энергия системы остается постоянной (не изменяется, сохраняется) при условии, что работа внутренних сил трения и работа внешних сил над телами системы равна нулю (или столь малы, что ими можно пренебречь).

Кинетическая энергия

Как один из видов механической энергии кинетическая энергия точечного тела равна работе, которую может совершить тело над другими телами за счет уменьшения своей скорости до нуля. При этом речь идет об инерциальных системах отсчета (ИСО).

Кинетическая энергия точечного тела рассчитывается по формуле K = (mv 2) / 2.

Кинетическая энергия тела увеличивается, когда над ним совершают положительную работу. Причем увеличивается на величину этой работы. При совершении над телом отрицательной работы его кинетическая энергия уменьшается на величину, равную модулю этой работы. Сохранение кинетической энергии (отсутствие ее изменений) говорит, что совершенная над телом работа была равна нулю.

Потенциальная энергия

Потенциальная энергия - это вид механической энергии, которой могут обладать только системы тел или тела, рассматриваемые как системы частей, но не одно точечное тело. Потенциальная энергия разных систем вычисляется по-разному.

Часто рассматриваемой системой тел является «тело – Земля», когда какое-либо тело находится вблизи поверхности планеты (в данном случае Земли) и притягивается к ней под действием силы тяжести. В этом случае потенциальная энергия равна работе силы тяжести при опускании тела на нулевую высоту (h = 0):

Потенциальная энергия системы «тело – Земля» уменьшается при совершении силой тяжести положительной работы. При этом уменьшается высота (h) нахождения тела над Землей. При увеличении высоты сила тяжести совершает отрицательную работу, а потенциальная энергия системы увеличивается. Если высота не изменяется, то потенциальная энергия сохраняется.

Другим примером системы, обладающей потенциальной энергией, является упруго деформированная другим телом пружина. Пружина обладает потенциальной энергией, так как представляет собой систему взаимодействующих между собой частей (частиц), стремящихся вернуть пружину в исходное состояние, т. е. пружина обладает силой упругости.

Силы упругости совершают работу при переходе тела в недеформированное состояние, в котором потенциальная энергия становится равной нулю. (Все системы стремятся уменьшить свою потенциальную энергию.)

Потенциальная энергия системы «пружина» определяется по формуле П = 0,5k · Δl 2 , где k - жесткость пружины, Δl - изменение длины пружины (в результате сжатия или растяжения).

Пружины в недеформированном состоянии обладает нулевой потенциальной энергией. Чтобы в системе появилась потенциальная энергия внешние силы должны совершить положительную работу против сил упругости, т. е. против внутренних потенциальных сил.