Равна полная механическая энергия. Закон сохранения механической энергии. Чему равна механическая энергия

Взгляните: катящийся по дорожке шар сбивает кегли, и они разлетаются по сторонам. Только что выключенный вентилятор ещё некоторое время продолжает вращаться, создавая поток воздуха. Обладают ли эти тела энергией?

Заметим: шар и вентилятор совершают механическую работу, значит, обладают энергией. Они обладают энергией потому, что движутся. Энергию движущихся тел в физике называют кинетической энергией (от греч. «кинема» – движение).

Кинетическая энергия зависит от массы тела и скорости его движения (перемещения в пространстве или вращения). Например, чем больше масса шара, тем больше энергии он передаст кеглям при ударе, тем дальше они разлетятся. Например, чем больше скорость вращения лопастей, тем дальше вентилятор переместит поток воздуха.

Кинетическая энергия одного и того же тела может быть различной с точек зрения различных наблюдателей. Например, с нашей точки зрения как читателей этой книги, кинетическая энергия пня на дороге равна нулю, так как пень не движется. Однако по отношению к велосипедисту пень обладает кинетической энергией, поскольку стремительно приближается, и при столкновении совершит очень неприятную механическую работу – погнёт детали велосипеда.

Энергию, которой тела или части одного тела обладают потому, что взаимодействуют с другими телами (или частями тела), в физике называют потенциальной энергией (от лат. «потенциа» – сила).

Обратимся к рисунку. При всплытии мяч может совершить механическую работу, например, вытолкнуть нашу ладонь из воды на поверхность. Расположенная на некоторой высоте гиря может совершить работу – расколоть орех. Натянутая тетива лука может вытолкнуть стрелу. Следовательно, рассмотренные тела обладают потенциальной энергией, так как взаимодействуют с другими телами (или частями тела). Например, мяч взаимодействует с водой – архимедова сила выталкивает его на поверхность. Гиря взаимодействует с Землёй – сила тяжести тянет гирю вниз. Тетива взаимодействует с другими частями лука – её натягивает сила упругости изогнутого древка лука.

Потенциальная энергия тела зависит от силы взаимодействия тел (или частей тела) и расстояния между ними. Например, чем больше архимедова сила и глубже мяч погружён в воду, чем больше сила тяжести и дальше гиря от Земли, чем больше сила упругости и дальше оттянута тетива, – тем больше потенциальные энергии тел: мяча, гири, лука (соответственно).

Потенциальная энергия одного и того же тела может быть различной по отношению к различным телам. Взгляните на рисунок. При падении гири на каждый из орехов обнаружится, что осколки второго ореха разлетятся намного дальше, чем осколки первого. Следовательно, по отношению к ореху 1 гиря обладает меньшей потенциальной энергией, чем по отношению к ореху 2. Важно: в отличие от кинетической энергии, потенциальная энергия не зависит от положения и движения наблюдателя, а зависит от выбора нами «нулевого уровня» энергии.

Энергия - это запас работоспособности системы. Механическая энергия определяется скоростями движений тел в системе и их взаимным расположением; значит, это энергия перемещения и вза­имодействия.

Кинетическая энергия тела - это энергия его механического движения, определяющая возможность совершить работу. При посту­пательном движении она измеряется половиной произведения массы тела на квадрат его скорости:

При вращательном движении кинетическая энергия тела имеет вы­ражение:

Потенциальная энергия тела - это энергия его положения, обус­ловленная взаимным относительным расположением тел или частей одного и того же тела и характером их взаимодействия. Потен­циальная энергия в поле сил тяжести:

где G - сила тяжести, h - разность уровней начального и конечного положения над Землей (относительно которого определяется энергия). Потенциальная энергия упругодеформированного тела:

где С - модуль упругости, дельта l - деформация.

Потенциальная энергия в поле сил тяжести зависит от располо­жения тела (или системы тел) относительно Земли. Потенциальная энергия упругодеформированной системы зависит от относительного расположения ее частей. Потенциальная энергия возникает за счет кинетической (подъем тела, растягивание мышцы) и при изменении положения (падение тела, укорочение мышцы) переходит в кинетическую.

Кинетическая энергия системы при плоскопараллельном движении равна сумме кинетической энергии ее ЦМ (если предположить, что в нем сосредоточена масса всей системы) и кинетической энергии системы в ее вращательном движении относительно ЦМ:

Полная механическая энергия системы равна сумме кинетической и потенциальной энергии. При отсутствии воздействия внешних сил полная механическая энергия системы не изменяется.

Изменение кинетической энергии материальной системы на неко­тором пути равно сумме работ внешних и внутренних сил на этом же пути:

Кинетическая энергия системы равна работе тормозящих сил, которая будет произведена при уменьшении скорости системы до нуля.

В движениях человека одни виды движения переходят в другие. При этом энергия как мера движения материи также переходит из одного вида в другой. Так, химическая энергия в мышцах превращается в механическую (внутреннюю потенциальную упругодеформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энергию в кинетическую энергию дви­жущихся звеньев тела и внешних тел. Механическая энергия внешних тел (кинетическая) передается при их действии на тело человека звеньям тела, преобразуется в потенциальную энергию растягиваемых мышц-антагонистов и в рассеивающуюся тепловую энергию (см. гл. IV).

Полная механическая энергия характеризует движение и взаимодействие тел, следовательно, зависит от скоростей и взаимного расположения тел.

Полная механическая энергия замкнутой механической системы равна сумме кинетической и потенциальной энергии тел этой системы:

Закон сохранения энергии

Закон сохранения энергии - фундаментальный закон природы.

В ньютоновской механике закон сохранения энергии формулируется следующим образом:

    Полная механическая энергия изолированной (замкнутой) системы тел остаётся постоянной.

Другими словами:

    Энергия не возникает из ничего и не исчезает никуда, она может только переходить из одной формы в другую.

Классическими примерами этого утверждения являются: пружинный маятник и маятник на нити (с пренебрежимо малым затуханием). В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно. В случае маятника на нити потенциальная энергия груза переходит в кинетическую энергию и обратно.

2 Оборудование

2.1 Динамометр.

2.2 Штатив лабораторный.

2.3 Груз массой 100 г – 2шт.

2.4 Линейка измерительная.

2.5 Кусочек мягкой ткани или войлока.

3 Теоретическое обоснование

Схема экспериментальной установки приведена на рисунке 1.

Динамометр укреплен вертикально в лапке штатива. На штатив по­мещают кусочек мягкой ткани или войлока. При подвешивании к ди­намометру грузов растяжение пружины динамометра определяется положением указателя. При этом максимальное удлинение (или стати­ческое смещение) пружины х 0 возникает тогда, когда сила упругости пружины с жесткостью k уравновешивает силу тяжести груза массой т:

kx 0 =mg, (1)

где g = 9,81- ускорение свободного падения.

Следовательно,

Статическое смещение характеризует новое положение равновесия О" нижнего конца пружины (рис. 2).

Если груз оттянуть вниз на расстояние А от точки О" и отпустить в точке 1, то возникают периодические колебания груза. В точках 1 и 2, называемых точками поворота, груз останавливается, изменяя на­правление движения на противоположное. Поэтому в этих точках ско­рость груза v = 0.

Максимальной скоростью v m ax груз будет обладать в средней точ­ке О". На колеблющийся груз действуют две силы: постоянная сила тяжести mg и переменная сила упругости kx. Потенциальная энергия тела в гравитационном поле в произвольной точке с координатой х равна mgx. Потенциальная энергия деформированного тела соответственно равна .

При этом за нуль отсчета потенциальной энергии для обеих сил принята точка х = 0, соответствующая положению указателя для не­растянутой пружины.

Полная механическая энергия груза в произвольной точке скла­дывается из его потенциальной и кинетической энергии. Пренебрегая силами трения, воспользуемся законом сохранения полной механиче­ской энергии.

Приравняем полную механическую энергию груза в точке 2 с коор­динатой -(х 0 -А) и в точке О" с координатой 0 :

Раскрывая скобки и проводя несложные преобразования, приведем формулу (3) к виду

Тогда модуль максимальной скорости грузов

Жесткость пружины можно найти, измерив статическое смещение х 0 . Как следует из формулы (1),

Величина, которая приравнивается к половине от произведения массы данного тела на скорость этого тела в квадрате, называется в физике кинетической энергией тела или энергией действия. Изменение или непостоянство кинетической или движущей энергии тела за некоторое время будет равно работе, которая была совершена за данное время определенной силой, действующей на данное тело. Если работа какой-либо силы по замкнутой траектории любого типа будет равна нулю, то силу такого рода называют потенциальной силой. Работа таких потенциальных сил не будет зависеть от того, по какой траектории движется тело. Такая работа определяется начальным положением тела и его конечным положением. Точка начала отсчета или нуль для потенциальной энергии может быть выбрана абсолютно произвольно. Величина, которая будет равна работе, совершенной потенциальной силой для перемещения тела из данного положения в нулевую точку, называется в физике потенциальной энергией тела или энергией состояния.

Для различных видов сил в физике существуют различные формулы вычисления потенциальной или стационарной энергии тела.

Работа, совершенная потенциальными силами, будет равна изменению данной потенциальной энергии, которое должно быть взято по противоположному знаку.

Если сложить кинетическую и потенциальную энергию тела, то получится величина, которая называется полная механическая энергия тела. В положении, когда система нескольких тел является консервативной, для нее справедлив закон сохранения или постоянства механической энергии. Консервативная система тел - это такая система тел, которая подвержена действию только лишь тех потенциальных сил, что не зависят от времени.

Закон сохранения или постоянства механической энергии звучит так: «Во время любых процессов, которые происходят в некоторой системе тел, ее полная механическая энергия всегда остается неизменной». Таким образом, полная или вся механическая энергия любого тела или любой системы тел остается постоянной, если эта система тел является консервативной.

Закон сохранения или постоянства полной или всей механической энергии всегда инвариантен, то есть не меняется его форма записи, даже при изменении начальной точки отсчета времени. Это является следствием из закона однородности времени.

Когда на систему начинают действовать диссипативные силы, например, такие как то наступает постепенное уменьшение или убывание механической энергии этой замкнутой системы. Такой процесс называется диссипация энергии. Диссипативная система - это система, энергия в которой может уменьшаться с течением времени. Во время диссипации происходит полное превращение механической энергии системы в другую. Это полностью соответствует всеобщему закону энергии. Таким образом, в природе нет полностью консервативных систем. Обязательно в любой системе тел или будет иметь место та или иная диссипативная сила.

Слово "энергия" происходит из греческого языка и имеет значение «действие", "деятельность». Само понятие было впервые введено английским физиком в начале XIX века. Под «энергией» понимается способность обладающего этим свойством тела совершать работу. Тело способно совершать тем большую работу, чем большей энергией оно обладает. Существует несколько ее видов: внутренняя, электрическая, ядерная и механическая энергии. Последняя чаще других встречается в нашей повседневной жизни. Человек с давних времен научился приспосабливать ее под свои потребности, преобразуя в механическую работу при помощи разнообразных приспособлений и конструкций. Мы можем также преобразовывать одни виды энергии в другие.

В рамках механики(один из механическая энергия - это физическая величина, которая характеризует способность системы (тела) к совершению механической работы. Следовательно, показателем присутствия данного вида энергии является наличие некоторой скорости движения тела, обладая которой, оно может совершать работу.

Виды механической В каждом случае кинетическая энергия - величина скалярная, складывающаяся из суммы кинетических энергий всех материальных точек, составляющих конкретную систему. Тогда как потенциальная энергия одиночного тела (системы тел) зависит от взаимного положения его (их) частей в рамках внешнего силового поля. Показателем изменения потенциальной энергии служит совершенная работа.

Тело обладает кинетической энергией, если оно находится в движении (ее иначе можно назвать энергией движения), а потенциальной - если оно поднято над поверхностью земли на какую-то высоту (это энергия взаимодействия). Измеряется механическая энергия (как и прочие виды) в Джоулях (Дж).

Для нахождения энергии, которой обладает тело, нужно найти работу, затрачиваемую на перевод этого тела в нынешнее состояние из состояния нулевого (когда энергия тела приравнивается к нулю). Далее приведены формулы, согласно которым может быть определена механическая энергия и ее виды:

Кинетическая - Ek=mV 2 /2;

Потенциальная - Ep = mgh.

В формулах: m - масса тела, V - скорость его g - ускорение падения, h - высота, на которую тело поднято над поверхностью земли.

Нахождение для системы тел заключается в выявлении суммы ее потенциальной и кинетической составляющих.

Примерами того как механическая энергия может применяться человеком служат и изобретенные в древнейшие времена орудия (нож, копье и т.д.), и самые современные часы, самолеты, прочие механизмы. Как источники данного вида энергии и выполняемой ею работы могут выступать силы природы (ветер, морские течение рек) и физические усилия человека или животных.

Сегодня очень часто систем (например, энергия вращающегося вала) подлежит последующему преобразованию при производстве электрической энергии, для чего используют генераторы тока. Разработано множество устройств (двигателей), способных выполнять непрерывное превращение в механическую энергию потенциала рабочего тела.

Существует физический закон сохранения ее, согласно которому в замкнутой системе тел, где нет действия сил трения и сопротивления, постоянной величиной будет сумма обоих видов ее (Ek и Ep) всех составляющих ее тел. Такая система идеальна, но в реальности подобных условий нельзя достичь.