Объёмная плотность энергии. Объемная плотность энергии электрического поля и выражение механической силы в виде производной от энергии электрического поля по изменяющейся координате. Заряд, пройденный через катушку индуктивности, равен

Рассмотрим процесс зарядки уединенного проводника. Чтобы его заряд достиг величины Q , будем сообщать проводнику заряд порциями dq , перенося их из бесконечно удаленной точки 1 на поверхность проводника в точку 2 (рис. 3.14). Для передачи проводнику новой порции заряда
внешние силы должны совершить работу против сил электрическогополя: . Поскольку проводник уединенный (точка1 бесконечно далека от проводника), то
. Потенциал точки2 равен потенциалу проводника . Поэтому
. Если проводнику передан зарядq , то его потенциал
. Полная работа внешних сил по зарядке проводника до значения зарядаQ будет равна

.

Согласно закону сохранения энергии, работа внешних сил по зарядке проводника увеличивает энергию создаваемого электростатического поля, т.е. проводник запасает определенную энергию:

. (3.13)

Рассмотрим процесс зарядки конденсатора от источника ЭДС. Источник в процессе зарядки переносит заряды с одной пластины на другую, причем сторонние силы источника совершают работу по увеличению энергии конденсатора:

,

где Q – заряд конденсатора после зарядки. Тогда энергия электрического поля, созданного конденсатором, определится как

. (3.14)

Выражение (3.14) позволяет записать величину энергии электростатического поля двумя способами:

и
.

Сопоставление двух соотношений позволяет задать вопрос: что является носителем электрической энергии? Заряды (первая формула) или поле (вторая формула)? Оба записанных равенства прекрасно согласуются с результатами экспериментов, т.е. расчет энергии поля можно одинаково правильно вести по обеим формулам. Однако такое наблюдается только в электростатике, т.е. когда осуществляется расчет энергии поля неподвижных зарядов. При рассмотрении теории электромагнитного поля в дальнейшем (гл. 8) мы увидим, что электрическое поле может создаваться не только неподвижными зарядами. Электростатическое поле – это частный случай электромагнитного поля, существующего в пространстве в виде электромагнитной волны. Его энергия распределена в пространстве с определенной плотностью. Введем понятие объемной плотности энергии поля следующим образом.

Преобразуем последнее равенство (3.14) для случая плоского конденсатора, воспользовавшись связью разности потенциалов и напряженности однородного поля:

где
– объем конденсатора, т.е. объем части пространства, в котором создано электрическое поле.

Объемной плотностью энергии поля называется отношение энергии поля, заключенного в малом объеме пространства к этому объему:

. (3.15)

Следовательно, энергию однородного электрического поля можно рассчитать так:
.

Сделанный вывод можно распространить на случай неоднородного поля таким образом:

, (3.16)

где
– такой элементарный объем пространства, в пределах которого поле можно считать однородным.

Для примера рассчитаем энергию электрического поля, созданного уединенным металлическим шаром радиусом R , заряженным зарядом Q , и находящимся в среде с относительной диэлектрической проницаемостью . Повторив рассуждения примера из п.2.5, получим модуль напряженности поля в виде функции
:

Тогда выражение для объемной плотности энергии поля примет вид:

Поскольку напряженность поля зависит только от радиальной координаты, то она будет практически постоянна в пределах тонкого сферического слоя с внутренним радиусом r и толщиной
(рис. 3.15). Объем этого слоя
. Тогда энергия поля определится так:

Аналогичный результат мы бы получили, если бы вычисляли энергию заряженного шара по формуле (3.13), воспользовавшись (3.6):

.

Однако следует помнить, что такой способ неприменим, если необходимо найти энергию электрического поля, заключенную не во всем объеме поля, а лишь в его части. Также метод расчета по формуле (3.13) нельзя использовать при определении энергии поля системы, для которой неприменимо понятие “емкость”.

Пусть два заряда q 1 и q 2 находятся на расстоянии r друг от друга. Каждый из зарядов, находясь в поле другого заряда, обладает потенциальной энергией П. Используя П=qφ, определим

П 1 =W 1 =q 1 φ 12 П 2 =W 2 =q 2 φ 21

(φ 12 и φ 21 – соответственно потенциалы поля заряда q 2 в точке нахождения заряда q 1 и заряда q 1 в точке нахождения заряда q 2).

Согласно определению потенциала точечного заряда

Следовательно.

или

Таким образом,

Энергия электростатического поля системы точечных зарядов равна

(12.59)

(φ і - потенциал поля, создаваемого n -1 зарядами (за исключением q i) в точке, в которой находится заряд q i).

    Энергия уединённого заряженного проводника

Уединённый незаряженный проводник можно зарядить до потенциала φ, многократно перенося порции заряда dq из бесконечности на проводник. Элементарная работа, которая совершается против сил поля, в этом случае равна

Перенос заряда dq из бесконечности на проводник изменяет его потенциал на

(С – электроёмкость проводника).

Следовательно,

т.е. при переносе заряда dq из бесконечности на проводник увеличиваем потенциальную энергию поля на

dП = dW =δA= Cφdφ

Проинтегрировав данное выражение, находим потенциальную энергию электростатического поля заряженного проводника при увеличении его потенциала от 0 до φ:

(12.60)

Применяя соотношение
, получаем следующие выражения для потенциальной энергии:


(12.61)

(q - заряд проводника).

    Энергия заряженного конденсатора

Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:

(12.62)

(q - заряд конденсатора, С – его электроёмкость.

Сучётом того, что Δφ=φ 1 –φ 2 = U - разность потенциалов (напряжение) между обкладками), получим формулу

(12.63)

Формулы справедливы при любой форме обкладок конденсатора.

Физическая величину, численно равную отношению потенциальной энергии поля, заключённой в элементе объёма, к этому объёму, называют объёмной плотностью энергии.

Для однородного поля объёмная плотность энергии

(12.64)

Для плоского конденсатора, объём которого V=Sd , где S - площадь пластины, d - расстояние между пластинами,

Но
,
тогда

(12.65)

(12.66)

(Е – напряжённость электростатического поля в среде с диэлектрической проницаемостью ε, D = ε ε 0 E - электрическое смещение поля).

Следовательно, объёмная плотность энергии однородного электростатического поля определяется напряжённостью Е или смещением D.

Следует отметить, что выражение
и
справедливы только для изотропного диэлектрика, для которого выполняется соотношениеp= ε 0 χE.

Выражение
соответствует теории поля – теории близкодействия, согласно которой носителем энергии является поле.

Согласно азам физики, известно о наличии магнитного поля вокруг проводника или катушки с током. Данное поле в полной мере зависит от проводника, среды распространения поля и силы тока. Аналогично электрическому полю, магнитное поле является неким носителем энергии. Поскольку основным критерием, влияющим на энергию поля, является сила протекающего тока, то работа тока по созданию магнитного поля будет совпадать с энергией магнитного поля.

Энергия магнитного поля

Природу такого явления, как энергия магнитного поля, проще осознать, рассмотрев процессы, проходящие в цепи.

Элементы схемы:

  1. L – катушка индуктивности;
  2. Л – лампочка;
  3. ε – источник постоянного тока;
  4. К – ключ для замыкания и размыкания цепи.

При замкнутом ключе, согласно картинке (а), ток протекает от плюсовой клеммы источника тока по параллельным веткам через катушку индуктивности и лампочку. По катушке индуктивности протекает ток I0, а через лампочку протекает ток I1. В первый момент времени лампочка будет гореть более ярко, ввиду большого сопротивления катушки индуктивности. По мере уменьшения сопротивления катушки индуктивности и увеличения тока I0 лампочка будет гореть более тускло. Это объясняется тем, что в первый момент времени поступивший на катушку ток пропорционален току большой частоты, исходя из формулы индуктивного сопротивления катушки:

XL=2πfL, где:

  • XL – индуктивное сопротивление катушки;
  • f – частота тока;
  • L – индуктивность катушки.

Индуктивное сопротивление катушки возрастает многократно. Катушка индуктивности в этот момент времени ведет себя как разрыв цепи. Со временем индуктивное сопротивление снижается до нуля. Поскольку активное сопротивление катушки индуктивности ничтожно мало, а сопротивление нихромовой нити лампочки велико, то практически весь ток цепи протекает через катушку.

После размыкания цепи ключом К, согласно картинке (б), лампочка не тухнет, а, наоборот, загорается более ярким светом и постепенно гаснет. Для осуществления горения лампочки необходима энергия. Энергия эта берется из магнитного поля катушки индуктивности и называется энергией магнитного поля. Благодаря этому катушка индуктивности выступает как источник энергии (самоиндукции), согласно картинке (в).

Определить активность магнитного поля возможно, рассмотрев электрическую схему.

Для расчета энергии магнитного поля есть необходимость в создании такой схемы, в которой энергия источника питания расходовалась бы непосредственно на образование магнитного поля. Соответственно, в схеме выше значениями внутреннего сопротивления источника питания и катушки индуктивности нужно пренебречь.

Обратите внимание! Из второго закона Кирхгофа следует, что сумма напряжений, подключенных к цепи, равна сумме падений напряжений на каждом из элементов цепи.

Общее напряжение цепи равно:

ε+εі=Ir+IR, где:

  • ε – электродвижущая сила (напряжение) источника питания;
  • εi – электродвижущая сила (напряжение) индукции;
  • I – сила тока цепи;
  • r – внутреннее сопротивление источника питания;
  • R – внутреннее сопротивление катушки индуктивности.

Поскольку рассмотренная цепь идеальная, и внутренние сопротивления равны нулю, то формула преобразовывается в такую:

Электродвижущая сила самоиндукции зависит от индуктивности катушки и скорости изменения тока в цепи, а именно:

подставив значение в общую формулу, получается:

  • ε-LΔI/Δt=0,
  • ε= LΔI/Δt,
  • ΔI= ε Δt /L.

Исходя из данной закономерности, с течением времени сила тока равняется:

Заряд, пройденный через катушку индуктивности, равен:

Объединив обе формулы, получаем:

Работа источника тока по переносу заряда по катушке индуктивности равняется:

A= εq=εLI2/2ε=LI2/2.

Поскольку рассматриваемая цепь является идеальной, а именно отсутствует какое-либо сопротивление, то затраченная работа источника тока пошла на формирование магнитного поля и соответствует энергии магнитного поля:

С целью исключения зависимости активности магнитного поля от характеристики катушки, необходимо преобразовать выражение через характеристику поля, а именно через вектор магнитной индукции:

  1. B=µ0µIn, где:
  • B – вектор магнитной индукции соленоида;
  • µ0 – магнитная постоянная (µ0=4π×10-7 Гн/м)
  • µ – магнитная проницаемость вещества;
  • I – сила тока в цепи соленоида;
  • n – плотность намотки, (n=N/l, где N – число витков, l – отрезок длины соленоида).
  1. L=µ0µn2V, где:

V – объем катушки (или объем магнитного поля, сосредоточенного в катушке) (V=Sl, S – площадь поперечного сечения соленоида, l – длина соленоида).

Если воспользоваться формулами (1 и 2), выражение, определяющее энергию магнитного поля, выглядит как:

Wмаг=B2V/2µ0µ.

Рассмотренная формула справедлива при условии, что фон однотипный. Если поле неоднородное, то необходимо рассматривать параметр, характеризующий концентрацию активности в этой зоне. Эта величина именуется как объемная плотность энергии магнитного поля.

Объемная плотность магнитной энергии

Она определяется по выражению:

ωмаг=Wмаг/V, где:

  • ωмаг – объемная плотность энергии магнитного поля;
  • V – объем некой зоны, где создано магнитное поле.

Единицей измерения объемной плотности энергии магнитного поля является отношение – Дж/м3.

Подставив в искомое выражение значение энергии поля W маг, получаем окончательную формулировку, определяющую объемную плотность:

ωмаг= B2/2µ0µ.

Изложенная информация подробно раскрывает порядок нахождения такого параметра поля, как энергия магнитного поля. Поскольку указанная величина применима для однородного поля, то для проведения вычислений в неоднородном магнитном поле используется величина, определяющая концентрацию или плотность энергии поля.

Видео

Электрическое поле - одна из двух компонент электромагнитного поля, представляющее собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика - напряжённость электрического поля - векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике - это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды

силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Энергия электрического поля. Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E - напряжённость электрического поля, D - индукция электрического поля.

Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Строго говоря, термин «энергия электромагнитного поля» является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению, равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определённой точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей. В системе СИ.

Если проводник поместить во внешнее электростатическое поле, то оно будет действовать на его заряды, которые начнут перемещаться. Это процесс протекает очень быстро, после его завершения устанавливается равновесное распределение зарядов, при котором электростатическое поле внутри проводника оказывается равным нулю. С другой стороны, отсутствие поля внутри проводника говорит об одном и том же значении потенциала в любой точке проводника, а также о том, что вектор напряженности поля на внешней поверхности проводника перпендикулярен ей. Если бы это было не так, появилась бы составляющая вектора напряженности, направленная по касательной к поверхности проводника, что вызвало бы перемещение зарядов, и равновесное распределение зарядов нарушилось бы.

Если мы зарядим проводник, находящийся в электростатическом поле, то, заряды у него будут располагаться только на внешней поверхности, так как, в соответствии с теоремой Гаусса, из-за равенства нулю напряженности поля внутри проводника нулю будет равен и интеграл от вектора электрического смещения D по замкнутой поверхности, совпадающей с внешней поверхностью проводника, который, как было установлено ранее, должен быть равен заряду внутри названной поверхности, т. е. нулю. При этом возникает вопрос о том, можем ли мы сообщить такому проводнику любой, сколь угодно большой заряд, Чтобы получить ответ на этот вопрос, найдем связь между поверхностной плотностью заряда и напряженностью внешнего электростатического поля.

Выберем бесконечно малый цилиндр, пересекающий границу «проводник – воздух» так, чтобы его ось была ориентирована вдоль вектора Е . Применим к этому цилиндру теорему Гаусса. Понятно, что поток вектора электрического смещения вдоль боковой поверхности цилиндра будет равна нулю из-за равенства нулю напряженности поля внутри проводника. Поэтому полный поток вектора D через замкнутую поверхность цилиндра будет равен только потоку через его основание. Этот поток, равный произведению D∆S , где ∆S – площадь основания, равен суммарному заряду σ∆S внутри поверхности. Иными словами, D∆S = σ∆S , откуда следует, что

D = σ , (3.1.43)

тогда напряженность электростатического поля у поверхности проводника

E = σ /(ε 0 ε) , (3.1.44)

где ε – диэлектрическая проницаемость среды (воздуха), которая окружает проводник.

Поскольку поле внутри заряженного проводника отсутствует, то создание внутри него полости ничего не изменит, т. е. не повлияет на конфигурацию расположения зарядов на его поверхности. Если теперь проводник с такой полостью заземлить, то потенциал во всех точках полости будет равен нулю. На этом основана электростатическая защита измерительных приборов от влияния внешних электростатических полей.

Теперь рассмотрим проводник, удаленный от других проводников, других зарядов и тел. Как нами было установлено ранее, потенциал проводника пропорционален его заряду. Опытным путем было установлено, что проводники, изготовленные из разных материалов, будучи заряженными до одного и того же заряда, обладают разными потенциалами φ . И наоборот, у проводников из разных материалов, имеющих одинаковый потенциал, различаются заряды. Поэтому мы можем записать, что Q = Cφ, где

C = Q/φ (3.1.45)

называется электроемкостью (или просто емкостью ) уединенного проводника. Единицей измерения электроемкости является фарад (Ф), 1 Ф – емкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда, равного 1 Кл.

Поскольку, как было установлено ранее, потенциал шара радиуса R в диэлектрической среде с диэлектрической проницаемостью ε

φ =(1/4πε 0)Q/εR , (3.1.46)

то с учетом 3.1.45 для емкости шара получим выражение

C = 4πε 0 εR . (3.1.47)

Из 3.1.47 следует, что емкостью в 1 Ф обладал бы шар в вакууме и имеющий радиус порядка 9*10 9 км, что в 1400 раз превышает радиус Земли. Это говорит о том, что 1 Ф – это очень большая электроемкость. Емкость Земли, например, всего около 0.7 мФ. По этой причине на практике пользуются миллифарадами (мФ), микрофарадами (мкФ), нанофарадами (нФ) и даже пикофарадами (пФ). Далее, поскольку ε – безразмерная величина, то из 3.1.47 получаем, что размерность электрической постоянной ε 0 – Ф/м.

Выражение 3.1.47 говорит о том, что проводник может обладать большой емкостью только при очень больших размерах. В практической же деятельности требуются устройства, которые при небольших размерах были бы способны накапливать большие заряды при сравнительно небольших потенциалах, т. е. имели бы большие емкости. Такие устройства называются конденсаторами .

Мы уже говорили о том, что, если к заряженному проводнику приближать проводник или диэлектрик, на них будут наводиться заряды так, что на ближайшей к заряженному проводнику стороне привносимого тела возникнут заряды противоположного знака. Такие заряды будут ослаблять то поле, которое создается заряженным проводником, и это будет понижать его потенциал. Тогда, в соответствии с 3.1.45, мы можем говорить об увеличении емкости заряженного проводника. На такой основе как раз и создают конденсаторы.

Обычно конденсатор состоит из двух металлических обкладок , разделенных диэлектриком . Его конструкция должна быть такой, чтобы поле было сосредоточено только между обкладками. Этому требованию удовлетворяют две плоские пластины , два коаксиальных (имеющих одну и ту же ось) цилиндра разного диаметра и две концентрические сферы . Поэтому конденсаторы, построенные на таких обкладках, называются плоскими , цилиндрическими и сферическими . В повседневной практике чаще используют два первых типа конденсаторов.

Под емкостью конденсатора понимают физическую величину С , которая равна отношению заряда Q , накопленного в конденсаторе, к разности потенциалов (φ 1 – φ 2 ), т. е.

C = Q /(φ 1 – φ 2) . (3.1.48)

Найдем емкость плоского конденсатора, который состоит из двух пластин площадью S , отстоящих друг от друга на расстояние d и имеющих заряды +Q и –Q . Если d мало по сравнению с линейными размерами пластин, то краевыми эффектами можно пренебречь и считать поле между обкладками однородным. Поскольку Q = σS , а, как было показано ранее, разность потенциалов между двумя разноименно заряженными пластинами с диэлектриком между ними φ 1 – φ 2 = (σ /ε 0 ε)d, то после подстановки этого выражения в 3.1.48 получаем

C = ε 0 εS/d . (3.1.49)

Для цилиндрического конденсатора длиной l и радиусами цилиндров r 1 и r 2

C = 2πε 0 εl/ln(r 2 /r 1) . (3.1.50)

Из выражений 3.1.49 и 3.1.50 хорошо видно, как можно увеличить емкость конденсатора. Прежде всего, для заполнения пространства между обкладками следует использовать материалы с максимально большой диэлектрической проницаемостью. Другим очевидным способом повышения емкости конденсатора является уменьшение расстояния между обкладками, однако у этого способа имеется важный ограничитель пробой диэлектрика , т. е. электрический разряд через слой диэлектрика. Разность потенциалов, при которой наблюдается электрический пробой конденсатора, называется пробивным напряжением . Для каждого типа диэлектрика эта величина своя. Что же касается увеличения площади пластин плоского и длины цилиндрического конденсаторов для увеличения их емкости, то всегда существуют чисто практические ограничения размеров конденсаторов, чаще всего это размеры всего прибора, в состав которого входит конденсатор или конденсаторы.

Для того чтобы была возможность увеличивать или уменьшать емкость, на практике широко используется параллельное или последовательное соединение конденсаторов. При параллельном соединении конденсаторов разность потенциалов на обкладках конденсаторов одна и та же и равна φ 1 – φ 2 , а заряды на них будут равны Q 1 = C 1 (φ 1 – φ 2) , Q 2 = C 2 (φ 1 – φ 2) , … Q n = C n (φ 1 – φ 2) , поэтому полный заряд батареи из конденсаторов Q будет равен сумме перечисленных зарядов ∑Q i , которая в свою очередь равна произведению разности потенциалов (φ 1 – φ 2) на полную емкость С = ∑C i . Тогда для полной емкости конденсаторной батареи мы получаем

C = Q/(φ 1 – φ 2) . (3.1.51)

Иными словами, при параллельном соединении конденсаторов полная емкость конденсаторной батареи равна сумме емкостей отдельных конденсаторов.

При последовательном соединении конденсаторов заряды на обкладках равны по модулю, а полная разность потенциалов ∆φ батареи равна сумме разностей потенциалов ∆φ 1 на зажимах отдельных конденсаторов. Поскольку для каждого конденсатора ∆φ 1 = Q/C i , то ∆φ = Q/C =Q ∑(1/C i) , откуда получаем

1/C = ∑(1/C i) . (3.1.52)

Выражение 3.1.52 означает, что при последовательном соединении конденсаторов в батарею суммируются величины, обратные емкостям отдельных конденсаторов, при этом суммарная емкость оказывается меньше самой маленькой емкости.

Мы уже говорили о том, что электростатическое поле потенциально. Это значит, что любой заряд в таком поле обладает потенциальной энергией. Пусть имеется проводник в поле, для которого известны заряд Q , емкость C и потенциал φ , и пусть нам необходимо увеличить его заряд на dQ . Для этого надо совершить работу dA = φdQ = Сφdφ по перенесению этого заряда из бесконечности на проводник. Если же нам надо зарядить тело от нулевого потенциала до φ , то придется совершить работу, которая равна интегралу от Сφdφ в указанных пределах. Понятно, что интегрирование даст следующее уравнение

А = Сφ 2 /2 . (3.1.53)

Эта работа идет на повышение энергии проводника. Поэтому для энергии проводника в электростатическом поле можно записать

W = Сφ 2 /2 = Q φ/2 = Q 2 /(2C) . (3.1.54)

Конденсатор, как и проводник, тоже обладает энергией, которая может быть вычислена по формуле, подобной 3.1.55

W = С(∆φ) 2 /2 = Q∆φ/2 = Q 2 /(2C) , (3.1.55)

где ∆φ – разность потенциалов между обкладками конденсатора, Q – его заряд, а С – емкость.

Подставим в 3.1.55 выражение для емкости 3.1.49 (C = ε 0 εS/d ) и учтем, что разность потенциалов ∆φ = Ed , получим

W = (ε 0 εS/d)(Ed 2)/2 = ε 0 εE 2 V/2 , (3.1.56)

где V = Sd . Уравнение 3.1.56 показывает, что энергия конденсатора определяется напряженностью электростатического поля. Из уравнения 3.1.56 можно получить выражение для объемной плотности электростатического поля

w = W/V = ε 0 εE 2 /2 . (3.1.57)

Контрольные вопросы

1. Где располагаются электрические заряды у заряженного проводника?

2. Чему равна напряженность электростатического поля внутри заряженного проводника?

3. От чего зависит напряженность электростатического поля у поверхности заряженного проводника?

4. Как обеспечивается защита приборов от внешних электростатических помех?

5. Что такое электроемкость проводника и какова единица ее измерения?

6. Какие устройства называются конденсаторами? Какие типы конденсаторов существуют?

7. Что понимают под емкостью конденсатора?

8. Каковы способы увеличения емкости конденсатора?

9. Что такое пробой конденсатора и пробивное напряжение?

10. Как вычисляется емкость конденсаторной батареи при параллельном соединении конденсаторов?

11. Чему равна емкость конденсаторной батареи при последовательном соединении конденсаторов?

12. Как вычисляется энергия конденсатора?