Потенциальная энергия проводника. Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля. Взаимная энергия системы точечных зарядов

Энергия заряженного проводника численно равна работе, которую должны со­вершить внешние силы для его зарядки W=A. При перенесении заряда dq из бесконечности на проводник совершается ра­бота dA против сил электростатического поля (по преодолению кулоновских сил отталки­вания между одноименными зарядами) : dA=jdq=Cjdj.

Чтобы зарядить тело от нулевого потенциала до потенциала j, потребуется ра­бота . Энергия заряженного проводника равна той работе, которую надо совершить, чтобы зарядить его: .

Выражение принято называть собственной энергией заряженного про­водника .

Увеличение потенциала j проводника при его зарядке сопровождается усиле­нием электростатического поля, возрастает напряженность поля . Естественно предположить, что собственная энергия заряженного проводника есть энергия его электростатического поля. Проверим это предположение на примере однородного поля плоского конденсатора. Повторяя ход вышеприведенного расчета, нетрудно получить энергию заряженного плоского конденсатора ,

где Dj - разность потенциалов его обкладок. Подставим в эту формулу выражения для емкости плоского конденсатора и разности потенциалов между обкладками . Тогда для энергии получим , где V=Sd - объем электростатического поля между обкладками конденсатора.

Отсюда следует, что собственная энергия заряженного плоского конденсатора пропорциональна V объему его поля и на­пря­женности . Следовательно, необходимо считать, что электростатическое поле обладает энергией. Объемная плотность энергии электрического поля или энергия единицы объема равна , . Где же локализована энергия электростатического поля и что является ее но­си­телем - заряды или само поле? Ответ на этот вопрос может дать только опыт. Од­нако электростатика не может ответить на данный вопрос, потому что она изучает посто­янные во времени поля неподвижных зарядов, т.е. в электростатике поля и за­ряды неотделимы друг от друга.

Опыты показали, что переменные во времени электрические поля могут суще­ствовать обособленно, независимо от возбудивших их зарядов. Они распространя­ют­ся в пространстве в виде волн, способных переносить энергию. Отсюда следует, что энергия локализована в поле и носителем электрической энергии является поле.

11. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.

1. Энергия заряженного проводника и конденсатора.

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид:

2. Плотность энергии электростатического поля.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем:

С учетом, что и :

Или .

12. Носители тока в средах. Сила и плотность тока. Уравнение непрерывности. Электрическое поле в проводнике с током. Силовые линии электрического поля и линии тока.

Электрический ток - упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках - электроны , в электролитах - ионы (катионы и анионы ), в газах - ионы и электроны , в вакууме при определенных условиях -электроны , в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Сила тока - скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока - основная единица в СИ 1 А - есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n - концентрация частиц. Их общий заряд


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j - это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Уравнение непрерывности.

Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S . Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V , охваченного поверхностью S . Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I , идущему вовне из области, ограниченный замкнутой поверхностью S . Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q , охватываемый поверхностью S , изменяется за время на , тогда в интегральной форме можно записать.


.

где потенциал, создаваемый в точке, где находится i- тый заряд системы всеми остальными зарядами. Однако поверхность проводника является эквипотенциальной, т.е. потенциалы одинаковы, и соотношение (16.13) упрощается:

.

Энергия заряженного конденсатора

Заряд положительно заряженной обкладки конденсатора находится в практически однородном поле отрицательно заряженной пластины в точках с потенциалом . Аналогичным образом отрицательный заряд находится в точках с потенциалом . Поэтому энергия конденсатора

.
(16.17)
.

Формула (16.17) связывает энергию конденсатора с наличием на его обкладках заряда, а (16.18) – с существованием в промежутке между обкладками электрического поля. В связи с этим возникает вопрос о локализации энергии электрического поля: на зарядах или в пространстве между обкладками. В рамках электростатики ответить на этот вопрос невозможно, однако электродинамика утверждает, что электрическое и магнитное поля могут существовать независимо от зарядов. Поэтому энергия конденсатора сосредоточена в пространстве между обкладками конденсатора и связана с электрическим полем конденсатора.

Поскольку поле плоского конденсатора является однородным, можно считать, что энергия распределена между обкладками конденсатора с некоторой постоянной плотностью . В соответствии с соотношением (16.18)

.

Учтем, что , т.е. электрической индукции. Тогда выражению для плотности энергии можно придать вид:



,

где - поляризованность диэлектрика между обкладками конденсатора. Тогда выражение для плотности энергии приобретает вид:

(16.22)
.

Первое слагаемое в правой части (16.23) представляет собой энергию, которой обладал бы конденсатор, если в пространстве между обкладками был бы вакуум. Второе слагаемое связано с энергией, затрачиваемой при зарядке конденсатора на поляризацию диэлектрика, заключенного в пространстве между обкладками.


ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Электрический ток.

ЭТ будем называть упорядоченное (направленное) движение заряженных частиц, при котором через некоторую воображаемую поверхность переносится отличный от нуля электрический заряд . Обратите внимание, определяющим признаком существования электрического тока проводимоти является именно перенос заряда, а не направленное движение заряженных частиц. Любое тело состоит из заряженных частиц, которые вместе с телом могут двигаться направленно. Однако без переноса заряда электрический ток, очевидно, не возникает.

Частицы, осуществляющие перенос за­ряда, называются носителями тока . Количественно электрический ток характе­ризуют силой тока , равной заряду, переносимому через рассматриваемую поверх­ность в единицу времени:

,

направленный в сторону вектора скорости положительных носителей тока. В формуле (1) - сила тока через площадку , расположенную перпендикулярно направлению движения носителей тока.

Пусть в единице объема содержится п + положительных носителей с заря­дом е + и п – отрицательных с зарядом е – . Под действием электрического поля носители приобретают средние скорости направленного движения соответст­венно и . За единицу времени через единичную площадку пройдут носителей, которые перенесут положительный заряд . Отрицательные перенесут соответственно заряд . Следовательно

(17.3)

Уравнение непрерывности

Рассмотрим среду, в которой течет электрический ток. В каждой точке, среды вектор плотности тока имеет определенное значение. Следовательно, можно говорить о поле вектора плотности тока и линиях этого вектора.

Рассмотрим поток через некоторую произвольную замкнутую поверхность S . По определению , его поток дает заряд, выходящий в единицу времени из объема V , ограниченного S . С учетом закона сохранения заряда можно утверждать, что поток должен быть равен скорости убывания заряда в V :

(17.8)
(17.9)

Равенство (17.7) должно выполняться при произвольном выборе объёма V , по которому производится интегрирование. Поэтому в каждой точке среды

Соотношение (17.8) называется уравнением непрерывности . Оно отражает закон со­хранения электрического заряда и утверждает, что в точках, которые являют­ся источниками вектора ,происходит убывание электрического заряда.

В случае стационарного, т.е. установившегося (неизменяющегося) тока, потенциал, плотность заряда и др. величины являются неизменными и

Это соотношение означает, что в случае постоянного тока вектор не имеет источников, а значит линии нигде ни начинаются и нигде не заканчиваются, т.е. линии постоянного тока всегда замкнуты .

Электродвижущая сила

После снятия электрического поля, создававшего в проводнике электри­ческий ток, направленное движение электрических зарядов быстро прекращается. Для поддержания тока необходимо от конца проводника с меньшим потенциалом переводить заряды к концу с большим потенциалом. Поскольку циркуляция вектора напряженности электрического поля равна нулю, то в замкнутой цепи кроме участков, на которых положительные носители движутся в сторону убывания потенциала, должны быть участки, на которых происходит перенос положительных зарядов в направлении возрастания потенциала. На этих участках перемещение зарядов может осуществляться только с помощью сил неэлектростатического происхождения, которые называют сторонними силами .

Рассмотрим сначала уединенный проводник, находящийся достаточно далеко от других тел. Если этому проводнику сообщить заряды после их перераспределения по объему проводника он приобретает потенциалы Отношение для данного уединенного проводника оказывается постоянным, зависящим только от его формы и размеров, и называется его электроемкостью. Это отношение сохраняется и при бесконечно малых изменениях заряда и потенциала, так что

Понятие электроемкости применимо только к проводникам, так как для них существует равновесное распределение зарядов по объему тела, при котором все точки проводника имеют один и тот же потенциал. Если же заряд сообщается изолятору, то он не растекается по нему и поэтому в различных местах изолятора потенциал может быть различен (в зависимости от расстояний до того места, где находится подведенный заряд).

Емкость уединенного шара радиуса находящегося в безграничном диэлектрике с проницаемостью легко рассчитать, так как потенциал на его поверхности (а следовательно, и в любой точке его объема)

В системе в

При наличии вблизи данного проводника других тел - проводников или изоляторов - отношение (1.58) зависит также от формы, размеров и относительного расположения соседних тел. Если эти соседние тела - проводники, то в них происходит перераспределение свободных зарядов, электрическое поле которых накладывается на поле данного тела и изменяет его потенциал. Если же соседние тела - диэлектрики, то они поляризуются, вследствие чего на поле данного тела накладывается поле связанных зарядов диэлектрика; это опять-таки изменяет потенциал рассматриваемого проводника.

Таким образом, при наличии соседних тел данный проводник при сообщении ему заряда приобретает иной потенциал, чем при их отсутствии.

Понятие электроемкости можно применять и к системе проводников; простейшей из них является система из двух одинаковых близко расположенных проводников, которым сообщаются равные и противоположные по знаку заряды. В частности, рассмотрим плоский конденсатор состоящий из двух близко расположенных параллельных металлических пластинок (обкладок); при сообщении обкладкам конденсатора зарядов они приобретают потенциалы Электроемкостью конденсатора называется отношение заряда на одной из его обкладок (по абсолютному значению, без учета знака) к

разности потенциалов между обкладками:

Допустим, что расстояние между обкладками настолько мало, что электрическое поле между ними можно считать однородным; напряженность этого поля, согласно формуле (1.36),

где площадь обкладок; поверхностная плотность зарядов на обкладках. Для однородного поля выполняется соотношение (1.45), поэтому

Подставив это выражение в формулу (1.60), получаем формулу Для расчета емкости плоского (двухпластинчатого) конденсатора:

У шарового конденсатора потенциалы на обкладках определяются зарядами которые имеются на этих обкладках, и их радиусами и

поэтому формула для расчета емкости такого конденсатора имеет вид

где величина зазора между обкладками. Если радиусы обкладок очень велики и мало, то можно положить (площадь обкладок) и тогда полученная формула будет совпадать с (1.61).

У цилиндрического конденсатора определяется емкость, приходящаяся на единицу длины. Выведем сначала формулу для разности потенциалов между обкладками; согласно формулам (1.32), (1.13) и (1.39), имеем:

(Интегрирование ведем вдоль перпендикуляра к оси конденсатора, т. е. вдоль направления силовой линии вектора очень длинного цилиндрического конденсатора вектор напряженности поля в зазоре перпендикулярен оси конденсатора: это условие не соблюдается на концах, но этим обстоятельством для достаточно длинных конденсаторов можно пренебречь.) Так как на единице длины каждой обкладки имеется заряд то «погонная» емкость цилиндрического конденсатора будет равна

Если величина зазора очень мала, то По этой формуле рассчитываетсямкость электрического кабеля, состоящего из внутреннего провода и наружной металлической брони, между которыми находится слой диэлектрика.

В электротехнике приходится рассчитывать емкость двухпроводной линии - системы из двух параллельных проводов (обычно круглого сечения). Обозначим

диусы сечений этих проводов через расстояние между осями проводов - через а и допустим, что . В этомслучае поле вокруг каждого провода можно с удовлетворительным приближением рассчитывать по формуле (1.34). Допустим, что на единице длины одного провода находится заряд а другого . В некоторой точке, расположенной на расстоянии х от оси первого провода, суммарная напряженность поля будет равна

Интегрируя вдоль перпендикуляра, соединяющего оси проводников, получим разность потенциалов между проводами:

Следовательно, погонная емкость двухпроводной линии будет равна

Так как было предположено, что расстояние между проводами значительно больше радиуса их сечений, то

В приведенных выше расчетных формулах для электроемкости при использовании системы следует положить а в Международной системе В частности, для плоского конденсатора:

Электроемкость выражается в фарадах В системе единицей электроемкости является сактиметр:

Так как заряда, потенциала, то см.

Рассмотрим параллельное (рис. II 1.26, а) и последовательное (рис. III.26, б) соединения конденсаторов. Если к точкам параллельно соединенных конденсаторов подвести равные и противоположные заряды то они распределятся между обкладками конденсаторов так, что Разность же потенциалов между обкладками всех конденсаторов будет одна и та же (так как они соединены вместе проводниками); обозначим через Емкостью такой системы конденсаторов называется отношение

Однако отношение емкость первого конденсатора, емкость второго и т. д. Следовательно,

Можно показать, что обычный многопластинчатый плоский конденсатор с числом пластин представляет собой параллельное соединение плоских двухпластинчатых конденсаторов, поэтому

Если к точкам последовательно соединенных конденсаторов подвести заряды то вследствие электростатической индукции на обкладках конденсаторов появятся равные и противоположные по знаку заряды При этом пластинки соседних конденсаторов, соединенные между собой проводником, имеют одинаковый потенциал.

Так как разность потенциалов на концах любой линии равна сумме разностей потенциалов на отдельных участках этой линии, то для линии проходящей через электрические поля соединенных конденсаторов, можно написать:

Емкостью этой системы конденсаторов по-прежнему называется отношение

Так как для первого конденсатора для второго то

Заметим интересную деталь: если между обкладками плоского конденсатора поместить несколько металлических пластинок, расположенных параллельно обкладкам (т. е. вдоль эквипотенциальных поверхностей), и если суммарный зазор между ними равен первоначальному зазору то емкость конденсатора не изменится. Действительно, такой конденсатор можно рассматривать как систему последовательно соединенных плоских конденсаторов, поэтому, применив формулу (1.64) и (1.67), получим

т. е. первоначальная емкость конденсатора не изменилась. В частности, емкость конденсатора не изменится, если вдоль эквипотенциальных поверхностей поместить металлические пластинки бесконечно малой толщины.

Если между обкладками плоского конденсатора имеются различные диэлектрики, как это показано на рис. II 1.26, в, а, то для расчета емкости такого конденсатора можно воспользоваться формулами (1.65) и (1.67). Конденсатор (рис. II 1.26, в) можно представить как систему из параллельно соединенных конденсаторов, имеющих одинаковые расстояния между пластинами, но различные и , и тогда

Конденсатор (рис. II 1.26, г) можно представить как систему последовательно соединенных плоских конденсаторов; так как введение или удаление бесконечно тонких металлических пластинок, параллельных обкладкам, не изменяет емкости конденсатора, то эти пластинки можно расположить вдоль границ между диэлектриками. Тогда, воспользовавшись формулами (1.61) и (1.67), получим

Если то эта формула перейдет в (1.61).

Для того чтобы сообщить проводнику некоторый заряд необходимо затратить определенную работу, так как каждая последующая порция подводимого заряда испытывает отталкивающее действие ранее поступивших на проводник одноименных зарядов. Допустим, что очередная порция заряда подводится из бесконечности, где потенциал к проводнику, имеющему уже потенциал Тогда элементарная работа, затрачиваемая на подведение заряда

Электроемкость уединенного проводника

Уединенный проводник - проводник, который удален от других проводников, тел и зарядов.

Электроемкость уединенного проводника (заряд, сообщение которого проводнику изменяет его потенциал на единицу (измеряется в фарадах) Q - заряд, фи - потенциал проводника.)

Электроемкость шара.

Конденсаторы

Конденсаторы - устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах обладать большой емкостью. Конденсатор состоит на двух проводников (обкладок), разделенных диэлектриком. Конденсаторы делят на плоские (две плоские параллельные пластины одинаковой площади, расположенные на расстоянии d друг от друга), цилиндрические (два проводящих коаксиальных цилиндра) и сферические (два проводника, имеющие форму концентрических сфер).

Емкость конденсатора - физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов между его обкладками. - для плоского; - для сферического; - для цилиндрического.

Конденсаторы характеризуются пробивным напряжением - разностью потенциалов между обкладками конденсатора, при которой происходит пробой - электрический разряд через слой диэлектрика в конденсаторе.

Соединения конденсаторов: последовательное, параллельное и смешанное.

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

1. Энергия системы неподвижных точечных зарядов

2. Энергия заряженного уединенного проводника () - равна той работе, которую необходимо совершить, чтобы зарядить этот проводник

3. Энергия заряженного конденсатора ()

4. Энергия электростатического поля () V=Sd - объем конденсатора

Объемная плотность энергии электростатического поля

Электрический ток, сила и плотность тока рисунок конденсатора выше

Электрический ток - любое упорядоченное движение электрических зарядов. В проводнике возникает электрический ток, называемый током проводимости. Для возникновения и существования электрического тока необходимо наличие свободных носителей тока - заряженных частиц,

способных перемещаться упорядоченно, и наличие электрического поля, энергия которого расходовалась бы на их упорядоченное движение.

Сила тока I - скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени, измеряется в амперах. Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.