Способ преобразования энергии ветра в электрическую энергию: устройство и принципы работы ветрогенератора. Создаём устройство для преобразования потенциальной энергии в кинетическую Плиты преобразующую кинетическую энергию в электрическую

Атмосфера Земли представляет собой огромный и неиссякаемый источник энергии. Постоянное движение воздушных масс имеет гигантскую кинетическую энергию, об истинных размерах которой можно только догадываться. Достаточно рассмотреть последствия любого урагана или просто шквалистого ветра, чтобы получить представление о масштабах имеющихся запасов энергии, использование которой пока еще ведется на минимальном уровне.

Наличие более эффективных способов производства электроэнергии ограничило активность исследовательских работ в этой области, которые были возобновлены относительно недавно. Нехватка углеводородных источников, разразившийся топливно-энергетический кризис заставляют пересматривать отношение к альтернативным вариантам производства электроэнергии, лидером среди которых является .

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность - одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину - 59,3 % , что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие .

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Устройство для преобразования

Для того, чтобы кинетическую энергию ветра трансформировать в электрическую, необходимо использовать соответствующее оборудование. Наиболее распространенным устройством для преобразования является ветрогенератор . Это агрегат, состоящий из нескольких узлов, выполняющих задачи по приему, передаче и преобразованию энергии потока ветра в электричество.

Существует множество вариантов конструкции ветряков, выполняющих одну и ту же функцию при помощи рабочего колеса с лопастями. Отличие всех видов конструкции состоит в направлении оси вращения и в конструкции вращающегося узла - ротора.

Ветрогенераторы делятся на две большие группы, имеющие разное расположение оси вращения:

  • горизонтальные
  • вертикальные

Наиболее эффективными считаются горизонтальные устройства, напоминающие пропеллер самолета. Поток ветра, воздействующий на лопасти, используется максимально возможным образом, практически без потерь. При этом, имеется постоянная необходимость коррекции положения оси в зависимости от направления ветра, что вынуждает использовать дополнительные приспособления и устройства. Наиболее простым и эффективным среди них является хвостовой стабилизатор, аналогичный хвосту самолета, автоматически устанавливающий ветряк по ветру.

Вертикальные конструкции имеют важное достоинство - независимость от направления ветра. При этом, эффективность таких устройств несколько ниже, так как поток одновременно воздействует как на рабочую, так и на обратную сторону лопастей, создавая уравновешивающее усилие. Оно останавливает вращение ротора, вынуждая прибегать к различным конструктивным ухищрениям. Так, используются различные кожухи, закрывающие обратные стороны лопастей.

Также применяют наружные конструкции, прикрывающие доступ потока к тыльным частям лопастей, спрямляющие устройства, направляющие поток в нужную сторону и т.д.

Практические результаты показали наибольшую эффективность горизонтальных установок в составе промышленных электростанций и выгоду использования вертикальных конструкций для обеспечения энергией отдельных домовладений.

Принципы работы ветрогенератора

Ветрогенератор является агрегатом, состоящим из нескольких узлов. Они выполняют отдельные задачи, являясь звеньями в цепи последовательных изменений вида энергии.

  • поток воздуха, взаимодействуя с крыльчаткой ветряка, заставляет ее вращаться
  • движение вала передается на генератор, который производит электрический ток
  • с генератора напряжение через выпрямитель подается на аккумулятор, заряжая его
  • за уровнем заряда следит специальное устройство - контроллер, отключающее питание и включающее его снова по необходимости
  • с аккумулятора заряд подается на инвертор, приводящий полученный ток в соответствующее состояние (220 В, 50 Гц) и передающий его потребителям

Небольшие устройства иногда работают по упрощенной схеме, подавая напряжение непосредственно с генератора потребителям. Это возможно для питания водяных насосов или освещения участка, теплицы и т.д.

Производительность ветрогенератора зависит от параметров собственно генератора, размеров и конструкции крыльчатки. Кроме того, важным параметром является преобладающая скорость ветра в регионе, обеспечивающая базовый режим вращения ротора и определяющая производительность всего комплекса.

Общеизвестно, что каждое тело находящееся на какой-то высоте над уровнем моря (точнее на каком-то расстоянии от центра Земли) обладает потенциальной энергией.
Но поискав по интернету я не нашёл ничего такого, что позволяло бы удобным и экономичным образом воспользоваться, к примеру, энергией, которой обладает валун, находящийся на склоне Эльбруса и на высоте 1000м от уровня моря.
Или для того, чтобы использовать потенциальную энергиею кучи пустой породы, находящейся рядом с шахтным стволом глубиной 500 м.

В первом случае можно, приложив к валуну усилие, столкнуть его вниз по склону.
Валун начнёт катится вниз. Потенциальная энергия превратится в кинетическую и эту энергию можно утилизировать, используя какой-то механизм.
Однако, впоследствии мы столкнёмся с тем, что, опуская валуны катиться по склону, они начнут там внизу накапливаться и в конечном итоге сбрасывать их будет некуда. Образуется куча из этих валунов.
Для продолжения придётся очищать место.
При этом может статься так, что количество энергии, затрачиваемое на эти действия, превысит количество энергии, которое было получено от движения валунов по склону горы вниз.

Аналогично и с шахтным стволом. Ствол наполнится породой и получение энергии остановится.

Единственное решение, которое имеется на настоящее время, для преобразования потенциальной энергии в кинетическую>механическую>электрическую - это гидроэлектростанция.
Всем известно, что количество потенциальной энергии, падающего на турбину потока, увеличивается посредством постройки плотин. Удаление отработавшей на турбине воды происходит естественным образом.

В случае же с земной поверхностью энергия, которой обладают тела (грунт, порода) находящиеся на каком то расстоянии от центра земли + выше уровня моря (гора, сопка), у них уже есть. Эти тела наверх поднимать не надо.
Задача в том, чтобы эту энергию утилизировать и использовать.

Представьте себе.
http://mir-prekrasen.net/referat/2175-severnaya-amerika.html
Средняя высота земной поверхности Северной Америки 700м над уровнем моря
Площадь (включая острова) 24228000 км

Если каким-либо способом ухитриться заставить слой породы в 1 метр, составляющий земную поверхность на высоте 700м над уровнем моря, скатиться (свалиться, упасть) на уровень моря, то какое количество энергии при этом можно было бы использовать?

Посчитаем.

Один кубический метр земной поверхности, находящийся на высоте 700м над уровнем моря при изменении его положения относительно уровня моря до нулевой отметки может дать 18.5409 (Мега Джоуль).
Плотность 2,7 тонны на м. куб.

24228000000м х 700м х 1м = 16 900 000 000 000 куб м.
На высоте 700 м. в Северной Америке имеется 16 900 000 000 000 куб м. грунта, который мы собираемся спустить на 700м вниз и воспользоваться энергией, которая при этом спуске выделится.
Это будет примерно 31375000000000000 мегаджоуль энергии или 8715277777.778 гигаватт*час
Если какая-либо ТЭЦ будет иметь мощность 1000Мвт, то для выработки такого количества энергии ей потребуется 8 715 277 часов или 995 лет

Задача. Как эту энергию взять? Хотя бы мал е е е нький кусочек с соседней сопки.

Предлагайте идеи.

Довольно широкое распространение получают ветряные электростанции. Они довольно удобны в использовании на равнинных территориях с частыми и сильными ветрами. Его устройство не очень сложно и многие владельцы частных домов задумываются об установке ветряков или солнечных батарей.

Итак, ветрогенератор или ветряная электростанция или ветроэлектрическая установка – это устройство для преобразования ветровой кинетической энергии в электрическую. Примитивное устройство такого ветрогенератора показано на рисунке ниже:

Ветрогенераторы можно разделить на промышленные и домашние. Промышленные ветроустановки, как правило, устанавливаются энергетическими корпорациями или государствами и объединяются в сети, в результате получаются электростанции использующие энергию ветра для выработки электрической энергии. Большое преимущество таких электростанций в том, что для выработки электричества им не нужно сырья (уголь, нефть, газ), а также они не генерируют отходов в процессе работы. Но есть и требования для них – высокий среднегодовой уровень ветра, иначе их применение будет экономически не целесообразным. Мощности современных ветрогенераторов могут достигать 6 МВт.

Сейчас за умеренные деньги можно купить ветрогенератор для загородного дома и тем самым обеспечить электроэнергией свой загородный дом. Обычно для обеспечения небольшого дома вполне хватает ветроустановки мощность 1 кВт, но при скорости ветра 8 м/с.

Если средне годовая скорость ветра не достаточна для полного обеспечения дома, ветроустановку можно дополнить солнечными элементами или дизель – генераторной установкой. При этом ветрогенераторы с вертикальными осями могут дополнятся меньшими ветрогенераторами. Как, пример – турбина Дарье вполне успешно может дополнятся ротором Савониуса и при этом они не мешают друг другу, а прекрасно дополняют друг друга.

Ветроэлектростанции в домашнем хозяйстве

Как правило, в домашних хозяйствах ветряки рассматриваются с точки зрения существенной экономии при отоплении, обслуживания теплиц (освещение), а также для снижения потребления электроэнергии из сети, а иногда даже ее генерация в обратно сеть. Большое непостоянство ветра не дает возможности спрогнозировать приблизительное количество электроэнергии, которую может произвести данная установка. Поэтому к постройке ветрогенератора добавляется еще вопрос стабилизации вырабатываемой им энергии.

Главным тормозом массового внедрения ветрогенераторов является довольно высокая стоимость киловатта мощности. Также расходы на их эксплуатацию тоже не маленькие.

Одной из важнейших характеристик ветряка есть так называемый коэффициент использования энергии ветра (КИЭВ). У самых лучших ветряков этот коэффициент достигает 60 – 80%, а в среднем он составляет 40 – 45%. У любительских ветряков он, как правило, не превышает 35%.

Ниже приведена таблица, в которой приводится примерные значения зависимости мощности установки от диаметра лопастей и скорости ветра:

Расчет ветрогенератора

Для правильного выбора агрегата нужно точно определить направление преимущественное ветра, его среднюю скорость в месте, где предположительно будет установлен ветряк. Нужно помнить, что скорость начальная вращения лопастей примерно 2 м/с, а максимальный эффект будет достигнут при скорости 9 – 12 м/с. Мощность ветроустановки зависит только от диаметра винта и скорости ветра.

Внизу приведены простейшие формулы для расчета мощности ветроустановки:

Где: Р – мощность, выраженная кВт;

D – диаметр винта, выраженный в метрах;

V – скорость ветра, м/с;

Где: Р – мощность, выраженная Вт;

S – площадь, на которую перпендикулярно дует ветер, выраженная в м 2 ;

V – скорость ветра, м/с;

Как видно из формул выше, на мощность ветроустановки мы можем повлиять диаметром винта, так как не можем повлиять на скорость ветра. Посчитав примерную мощность, полученную от установки ветряка, можно прикинуть, а стоит ли устанавливать ветряк? Если установка ветряка не целесообразна можно выбрать другой альтернативный источник энергии (солнечные батареи) или установить несколько ветряков.

Экзаменационные вопросы и ответы по дисциплине

«Энергетические установки и электрооборудование судна»,

для курсантов 2-го курса «Судовождение»,

3-й семестр.

1. Принципы преобразования механической энергии в электрическую и обратно.

Элект­рические машины предназначены для преобразования механичес­кой энергии в электрическую (генераторы) и электрической энергии в механическую (двигатели). Принцип действия всех элек­тромашин основан на законе электромагнитной индукции и возник­новении электромагнитной силы.

При перемещении прямолинейного проводника, замкнутого че­рез внешнюю цепь на нагрузку, с постоянной скоростью в одно­родном магнитном поле в проводнике индуктируется неизменяю­щаяся э.д. с. электромагнитной индукции, а в замкнутой цепи возникает электрический ток (рис. 22, а) . Направление э. д. с. в про­воднике определяют по правилу правой руки (рис. 22,в), а ее вели­чину - по формуле

E = Blv sin а, (21)

где В - магнитная индукция, характеризующая интенсивность маг­нитного поля; l - активная длина проводника, пронизываемая силовыми линиями магнитного поля, м; v - скорость перемещения проводника в магнитном поле, м/с: а - угол между направлением скорости движения проводника и направлением вектора магнитной индукции.

Если проводник движется перпендикулярно силовым линиям магнитного поля, то а=90°, a э. д. с. будет максимальной:

Направление тока в проводнике совпадает с направлением э. д. с.

На проводник с током действует электромагнитная сила (Н).Эта сила препятствует перемещению проводника в магнитном поле. Направление электромагнитной силы определяют по правилу левой руки (рис. 22,г). Для ее преодоления необходима внешняя сила. Чтобы проводник перемещался с постоянной скоростью, не­обходимо приложить внешнюю силу , равную по величине и противоположно направленную электромагнитной силе.

Из сказанного следует, что механическая мощность , затрачиваемая на движение проводника в магнитном поле, пре­образуется в электрическую мощность в цепи проводника.

В судовых генераторах внешняя сила создается первичными двигателями (дизелем, турбиной).

Преобразование электрической энергии в механическую . При пропускании электрического тока одного направления через прямо­линейный проводник, расположенный в однородном магнитном по­ле, возникает электромагнитная сила, под действием ко­торой проводник перемещается в магнитном поле с линейной ско­ростью V (рис. 22,б) Направление движения проводника совпадает с направлением действия электромагнитной силы и определяется по правилу левой руки. Во время движения проводника в нем ин­дуктируется э д. с, направленная встречно напряжению U источника электроэнергии. Часть этого напряжения затрачива­ется на внутреннем сопротивлении проводника R.

Таким образом, электрическая мощность в проводнике, преобразуется в

механическую и частично расходуется на тепловые потери проводника Именно на этом принципе ос­нована работа электродвигателей.

2. Принципы получения переменного и постоянного тока.

В реальных электрических машинах проводники конструктивно изготовляют в виде рамок. Для уменьшения магнитного сопротивления машины, а следовательно, для увеличения значений э. д. с. и к. п. д. в гене­раторах, вращающего момента и к. п. д в электродвигателях ак­тивные стороны рамки укладывают в пазы цилиндрического сталь­ного сердечника (якоря), который совместно с закрепленной на нем рамкой может свободно вращаться в магнитном поле. Для этой же цели полюсам магнита придают особую форму, при которой сило­вые линии поля всегда направлены перпендикулярно направлению движения активных сторон рамки, а магнитная индукция в воздуш­ном зазоре между полюсами и якорем распределена равномерно (рис. 23,а).

Если при помощи сторонней силы якорь вместе с рамкой вра­щать в магнитном поле полюсов, то в соответствии с законом элект­ромагнитной индукции в активных сторонах аЬ и cd рамки индук­тируются э. д. с, направленные в одну сторону и суммируемые.

При переходе активных сторон через плоскость, перпендикуляр­ную магнитному полю, индуктируемые в них э. д. с. меняют свое направление. В рамке будет действовать э д. с, переменная как по величине, так и по направлению. Если концы рамки через кон­тактные кольца соединить с внешней целью, то в цепи будет протекать переменный ток.

Рис 23 Принцип получения переменного тока

1 - щетки. 2 - контактные кольца, 3 - стальной сердечник; 4 -рамка

Для выпрямления тока электрическая машина снабжена специ­альным устройством - коллектором . Простейший коллектор пред­ставляет собой два изолированных полукольца, к которым присое­диняют концы вращающейся в магнитном поле рамки (рис. 24,а).

С внешней цепью коллекторные пластины соединены при помо­щи неподвижных щеток, рабочие поверхности которых свободно скользят по вращающемуся коллектору 2. Щетки на коллекторе устанавливают так, чтобы они переходили с одного полукольца на другое в тот момент, когда индуктируемая в рамке э. д. с. равна нулю. При повороте на 90°, когда рамка займет горизонтальное положе­ние, в ее проводниках э. д. с. не индуктируется, так как они не пе­ресекают магнитного поля. Ток в контуре также равен нулю.

Рис 24. Принцип получения постоянного тока

При перемещении еще на 90* рамка снова займет вертикальное поло­жение, ее проводники поменяются местами и направление э. д. с и тока в них изменится. Так как щетки неподвижны, то к щетке 3 (+) по-прежнему подходит ток от рамки и далее через приемник направляется к щетке 1(-). Таким образом, во внешней цепи на­правление тока не изменяется.

График выпрямленных э д с и тока изображен на рис. 24,6. Выпрямленный ток имеет пульсирующий характер. Пульсацию то­ка можно уменьшить увеличением числа рамок, вращающихся в магнитном поле машины, и соответственно числа коллекторных пластин.

Наука имеет различные коэффициенты по преобразованию кинетической энергии в тепловую. Однако, до настоящего времени не расшифрована физическая суть такого преобразования.

Это преобразование связано с трением. Трение процесс взаимодействия тел при их относительном движении (смещении). Трение всегда сопровождается выделением тепла и износом трущихся поверхностей.

Выделение тепла связано также с ударами минимум двух тел (в частности, при лёгком постукивании молотком по металлу, удар пушечного ядра в корпус корабля и др.).

Преобразование кинетической энергии в тепловую - это частный случай волнового взаимодействия замкнутых контуров (атомов, доменов) имеющих пульсационные электронные оболочки.

В любой среде распространение волн всегда сопровождается потерями - диссипацией энергии . Все волны обладают энергией и у всех физических волн происходит диссипация энергии.

Наукой принято, что кинетическая энергия любой движущейся частицы представляет собой волну Луи де Бройля. Де Бройлем был выведен принцип универсальности корпускулярно-волнового дуализма относительно всех видов элементарных частиц (атомов, электронов, и т.д.). Все частицы находятся в колебательном движении с длиной волны

л=h / m ? v» (л = h/p),

где m и v - масса и скорость частицы, масса составляет

m = h / л? v », p - импульс «p = h / л» ,

«р = m ? v», «р = Ft (действия силы) ».

Позднее, наукой выведена формула диссипации кинетической энергии за один период колебания волны де Бройля.

Диссипация -

«Wd = H0hс/v»

(считается формулой «вязкости физического вакуума»), где H 0 - постоянная Хаббла (2.40 ± 0.12)·10 -18 Гц, «h» - постоянная Планка, «с» - скорость света, «v» - скорость частицы. Формула подходит для всех тел и частиц.

Из формулы видно, что диссипация кинетической энергии прямо пропорциональна массе и пройденному расстоянию, а также импульсу и времени его действия.

Вывод науки: у всех волн помимо таких свойств как длина, частота и энергия имеется еще и диссипация энергии из-за того, что при каждом колебании волны происходит перекачка одного вида энергии в другой и наоборот.

Какие выводы можно сделать из данного утверждения?

Формула и трактовка диссипации говорит о том, что кинетическая энергия с каждым колебанием снижается, по умолчанию, до полного угасания волн и перехода в тепловую энергию. Это выражается в аспекте «однонаправленности» и «необратимости» эволюционного процесса в Мироздании - фундаментального положения современной науки - Второго начала термодинамики. В результате этого необратимого процесса космические формации обязательно «сваливаются» в термодинамическое равновесие - «тепловую смерть» с максимумом энтропии и хаоса (максимальной степени неупорядоченности теплового движения, т.е. в конечной стадии на уровень элементарных частиц - прим. А.П.). Для науки круговорот материи в Мироздании закончился, т.к. какого-либо реального механизма формирования сингулярной точки и последующего её «Большого Взрыва» в Природе не существует. Имеется единственный выход из данной абсурдной ситуации - признать существование Первичной космической субстанции - элементарных частиц и три стадии их структурирования - монного, три-А-дного и дихотомического.

Размыкание эволюционного процесса в науке является результатом отсутствия в Парадигме двух факторов - гексагональных тороидальных «этажей» - слоёв в частотно-спектральной структуре Мироздания, а также механизма космической пульсации.

В результате в науке (термодинамике) до настоящего времени нет механизма обратимости процессов во Вселенной - тороидальных структур с магнитными потоками N-SS-N (N-SS-NN-S….), т.е. процессов структурирования аннигиляции материи и Мироздания. А однажды возбуждённые волны, в отсутствие механизма космической пульсации, в результате диссипации, безвозвратно угасают.

В соответствие с внутри-Природной информационной системой, в волновых процессах импульс, возбуждающий Среду, создается пульсационным выбросом (с определённой массой, силой с определённой временной продолжительностью

р = Ft (действия силы)

Колебательное же движение - волну создаёт череда периодических импульсов (периодических актов пульсации частиц ) на каждой несущей частоте, формируемой в ходе дихотомического структурирования материи и «этажей» Вселенной.

В этих условиях реальная волна выглядит как чередование сгущений (с повышенной плотностью вещества) и разрежений (с пониженной плотностью) вещества (частиц) Среды. В графическом изображении волна - это череда максимумов и минимумов амплитуды колебаний, для стоячих волн - череда узлов и пучностей.

Пульсационный выброс одного импульса имеет определённое количество выбрасываемого источником вещества и поэтому радиус выброса в трёхмерном пространстве ограничен. Пульсационный выброс формирует спектр излучения. Каждый последующий импульс также формирует спектр, который накладывается на предыдущий. При наложении спектров выбрасываемое вещество взаимодействует и формирует устойчивое частотно-спектральное распределение материи с максимумами лучевой энергии на «синем» конце и тепловой энергии на «красном» конце спектра. Диссипации, как таковой, с каждым колебанием волны не происходит. Тепловые потери при взаимодействии налагающихся друг на друга спектров компенсируются пульсационными выбросами. Диссипация, в данном случае, это отражение снижения лучевой энергии от источника пульсации к «красному» концу спектра (при одновременном росте тепловой энергии на «красном» конце).

Залогом существования реального Мира является способность октаедрических корпускул материи (результата дихотомического структурирования) поглощать более мелкие космические формации (корпускулы), т.е. восстанавливать свою потерянную энергию и пульсировать (выбрасывать поглощаемые частицы) наружу (процессы поглощения и излучении телами известны ещё со времён Кирхгоффа (1859 г.). Часть выброшенных частиц составляет электрическую оболочку корпускулы, часть более энергичных («тепловых», как говорилось выше, более «скоростных» и быстрых) наполняет окружающую Среду. Эти «скоростные» тепловые частицы также являются предметом последующего поглощения и пульсации корпускул. Баланс сохраняется, Закон сохранения энергии обеспечивается.

Таким образом, в реальности, можно выделить два вида диссипации.

Во-первых, диссипация (лучевой) энергии, как отражение угасания (ослабление) импульса в пульсационном цикле.

Во-вторых, диссипация - потеря кинетической энергии с переходом в тепло в ходе передачи импульса от одних колеблющихся частиц Среды (замкнутых контуров, тел, ионов кристаллической решётки, свободных электронов) к другим. Этот вид соответствует определению диссипации науки (при условии дополнительного учёта пульсационных процессов).

Механизм перехода кинетической энергии в тепловую представляется следующим образом.

Трение взаимодействующих тел - результат всеобщей «вязкости физических сред» (в.т.ч. «физического вакуума»). Отсюда - физическая суть диссипации - перехода кинетической энергии в тепло - это взаимодействие электрических (пульсационных) оболочек корпускул. На атомно-молекулярном уровне это взаимодействие электронных оболочек, в большей степени её наружных («валентных») электронных слоёв.

При контакте и перемещении относительно друг друга (трении) «валентные» слои спектра пульсации (с частотными фракталами 3,4-3,1 Гц деформируются, частично разрушаются с выделением «скоростных» частиц (т.н. быстрых электронов) в окружающую Среду. Происходит феномен выделения тепла. Тенденция перехода частотного фрактала (солитона) от 3,1 в сторону к 3,0 Гц приводит к дополнительному нагреву (частичному эффекту «самопроизвольного» нагревания).

Ударное взаимодействие существует в двух видах - внешнего и внутреннего ударов.

В случае внешнего ударного взаимодействия происходит деформация более глубоких (по сравнению с трением) электронных слоёв, с выбросом значительно большего количества «быстрых» частиц. Происходит мощное разогревание до свечения и даже плавления ударяющихся поверхностей.

Количество тепловой энергии пропорционально кинетической энергии (скорости и массе) ударного тела, т.е. достаточной амплитуде и длине пробега, а также импульсу (характеризующегося силой и продолжительностью удара).

Внутренний удар характерен для взаимодействия внутри корпускулы, в частности, ударов структурных элементов триплета о свою энергетическую оболочку, а также взаимных ударов элементов самого триплета.

Откуда в этом случае возникают «скоростные» мелкие частицы, определяющие проявление тепловой энергии? Суть феномена в том, что элементы триплета и контур корпускулы на атомно-молекулярном уровне являются сложными частицами в составе множества суб- суб- суб-…частиц на различных уровнях несущих частот. В результате, внутренних ударов также выбивается в Среду множество скоростных тепловых частиц.

Тепловой эффект возможен также за счёт высокочастотного облучения (например, - излучением или «биологическим - N» через резонанс) повышающего рост частотного фрактала «синего» конца спектра (в частности, до 7,7 Гц и выше).

В технике, при сварке и резке материалов, эффект внешнего удара (и облучения) используется путём одновременного точечного облучения разными по мощности лучами.